skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "He, Yiheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Interest in automatically searching for Transformer neural architectures for machine translation (MT) has been increasing. Current methods show promising results in in-domain settings, where training and test data share the same distribution. However, in real-world MT applications, it is common that the test data has a different distribution than the training data. In these out-of-domain (OOD) situations, Transformer architectures optimized for the linguistic characteristics of the training sentences struggle to produce accurate translations for OOD sentences during testing. To tackle this issue, we propose a multi-level optimization based method to automatically search for neural architectures that possess robust OOD generalization capabilities. During the architecture search process, our method automatically synthesizes approximated OOD MT data, which is used to evaluate and improve the architectures' ability of generalizing to OOD scenarios. The generation of approximated OOD data and the search for optimal architectures are executed in an integrated, end-to-end manner. Evaluated across multiple datasets, our method demonstrates strong OOD generalization performance, surpassing state-of-the-art approaches. 
    more » « less
    Free, publicly-accessible full text available December 25, 2025
  2. Photochemistry of multifunctional aromatics like vanillin can depend strongly on wavelength, initial concentration, and ionic strength. Using several narrow-band LEDs we present wavelength resolved quantum yields for loss of vanillin. 
    more » « less